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According to the theory of unimodular relativity developed by Anderson and Finkelstein,
the equations of general relativity with a cosmological constant are composed of two
independent equations, one which determines the null-cone structure of space–time,
another which determines the measure structure of space–time. The field equations that
follow from the restricted variational principle of this version of general relativity only
determine the null-cone structure and are globally scale-invariant and scale-free. We
show that the electromagnetic field may be viewed as a compensating gauge field that
guarantees local scale invariance of these field equations. In this way, Weyl’s geometry
is revived. However, the two principle objections to Weyl’s theory do not apply to the
present formulation: the Lagrangian remains first order in the curvature scalar and the
nonintegrability of length only applies to the null-cone structure.
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1. INTRODUCTION

The theory of general relativity unifies gravitation with the geometry of space-
time by replacing the scalar Newtonian gravitational potential with the symmetric
metric tensorgµν of a four-dimensional general Riemannian manifold by means
of the equivalence principle. As is well known, the electromagnetic field may
not be interpreted in terms of the geometrical properties of space–time as well.
This difficulty motivated Einstein (1945; Pais, 1982) and many others (Eddington,
1954; Kaluza, 1921; Klein, 1926; Pauli, 1958; Schrodinger, 1950; Weyl, 1922),
immediately following the advent of general relativity, to generalize Riemannian
geometry in order to provide a description of electromagnetism within the geo-
metrical framework of space–time. However, despite tremendous effort, the early
unification program was not successful.

Although modern gauge theory has revealed the common gauge structure
of the four fundamental interactions, this problem remains unsolved today. The
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symmetry group associated with the gauge theory of gravity3 is the Poincar´e group,
the fundamental symmetry group of space–time, while the symmetry group asso-
ciated with the electromagnetic field is theU (1) group of phase transformations of
the wave function, which is an internal or nongeometric (Wigner, 1967) symmetry
and does not enjoy a space–time interpretation. Thus, modern gauge theory does
not succeed in casting the electromagnetic potentials into the space–time manifold
even though it constitutes a great step forward toward the unification of the fields.

In this investigation we show that the electromagnetic field can be introduced
as a compensating gauge field that guarantees local scale invariance in general rel-
ativity. There have been a number of scale-invariant theories of gravity proposed
in the past. The first scale-invariant theory of gravity, because of Weyl (1918-a,b,
1919, 1920, 1922), was also an attempt to incorporate electromagnetism into gen-
eral relativity. Weyl’s theory is based on an elegant generalization of Riemannian
geometry that is covariant with respect to both coordinate transformations and lo-
cal scale transformations. Since the action that produces Einstein’s field equations
is only invariant with respect to the former group, Weyl proposed a new action
that is invariant with respect to the latter group as well. This, however, requires
a Lagrangian quadratic in the curvature scalar, and therefore leads to field equa-
tions that are fourth-order differential equations. Consequently, Weyl’s theory does
not reduce to general relativity in the absence of electromagnetism. Furthermore,
Einstein (1918) showed that the reading of an atomic clock would depend on its
prehistory according to Weyl’s theory, which is in conflict with the well-defined
electromagnetic spectrum observed from chemical elements. As a result, Weyl’s
theory was ultimately rejected. Years later, Dirac (1973) (see also Canutoet al.,
1977) revived Weyl’s geometry in an attempt to reconcile general relativity with his
Large Numbers hypothesis (Dirac, 1938). Dirac maintains second-order differen-
tial equations at the expense of introducing a new scalar field and avoids Einstein’s
objection with his postulate of a second metric, independent of the gravitational
potentials, that determines the intervaldsmeasured by an atomic apparatus. This
theory belongs to a wider class of theories, named variable-gravity theories, that
predict a time-dependent variation in the strength of the gravitational interaction.
The advantages and drawbacks of such theories are reviewed by Wesson (1980).
Other attempts at incorporating scale invariance in general relativity (see, for ex-
ample, Hehlet al., 1989) have been motivated by developments in particle physics.
Since approximate scale invariance has been observed in deep inelastic electron-
nucleon scattering (Bjorken, 1967, 1969) many believe, in accordance with grand
unification, that gravitation must also exhibit approximate scale invariance at very
high energies.

In the following, we develop a new method of incorporating local scale invari-
ance into general relativity. First, we show that a well-known procedure developed

3 The local gauge theory of the Poincar´e group is theU4 theory of gravity which admits spin and torsion
into relativistic gravitational theory (Hehlet al., 1976).
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by Anderson and Finkelstein (1971) for introducing the cosmological constant
removes the scale dependence from the field equations, leaving a set of scale-free
field equations behind. Thus, general relativity with a cosmological constant may
be viewed as a union of two independent equations. One equation determines
the null-cone or causal structure of space–time; the other equation determines
the measure structure of space–time. Since the field equations that determine the
null-cone structure are globally scale-invariant and scale-free, and are furthermore
independentof the measure equation, we consider them the dynamical equations
of a globally scale-invariant theory. We demand local scale invariance of this the-
ory and see that the electromagnetic field may indeed be treated as a compensating
gauge field associated with the group of local scale transformations. The measure
structure is left undetermined by the field equations and is introduced as an exter-
nal field which is treated as an absolute object. The theory presented below shares
similarities with Weyl’s unified theory but does not yield to the same criticisms,
since the Lagrangian is first order in the curvature scalar and Einstein’s objection
does not apply.

2. COORDINATE INVARIANCE VS. SCALE INVARIANCE

Consider an arbitrary action

I =
∫

W
√−gd4x, (1)

whereW is an arbitrary function of the metric tensor and its derivatives. The
variational derivative ofI with respect to the metric is defined as

δ I

δgµν
=Wµν , (2)

whereWµν is a symmetrical contravariant density of the second rank. As is well
known, if the action is invariant under an arbitrary infinitesimal coordinate trans-
formation that vanishes on the boundary:

x′µ = xµ − ξµ, (3)

whereξµ are arbitrary infinitesimal functions of the space–time coordinates, then
the covariant divergence ofWµν vanishes identically:

Wµν
;ν = 0. (4)

This follows from Eq. (1) and (2), noting that the transformation (3) produces a
variation in the metric:

δgµν = ξµ;ν + ξν;µ. (5)

Similarly, if the action is invariant under an infinitesimal scale transformation of
the metric tensor that vanishes on the boundary:

gµν → λgµν = (1+ ε)gµν , (6)
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whereλ = λ(xα) is an arbitrary function of the space–time variables andε ¿ 1,
then the trace ofWµν vanishes identically:

Wµ
µ = 0. (7)

This also follows from Eqs. (1) and (2), noting that the transformation (6) produces
a variation in the metric:

δgµν = εgµν. (8)

The action for the gravitational field in the absence of matter is obtained by
settingW = gµνRµν in (1):

IG =
∫

gµνRµν
√−gd4x, (9)

whereRµν is the Ricci tensor. The variational derivative of Eq. (9) with respect to
the metric is

δ IG

δgµν
= Gµν

√−g ≡
(

Rµν − 1

2
gµνR

)√−g, (10)

SinceR
√−g is a scalar density, the action (9) is invariant under the transformation

(3). Therefore, the covariant divergence ofGµν vanishes:

Gµν
;ν = 0. (11)

Note that this equation is a consequence of the invariance of the action and is there-
fore valid for any reasonable metric field distributiongµν , regardless of whether or
not gµν satisifes the field equations. Equation (11) also follows from the Bianchi
identities.

While the action (9) is invariant under general coordinate transformations it
is not invariant under the scale transformation (6).IG is not even invariant under a
global scale transformation for whichλ = constant;Rand

√−g transform under a
global scale transformation with Weyl weights−1 and+2, respectively. However,
the scalar curvature is the only quantity constructed from the metric tensor and
its first and second derivatives alone, linear in the latter, that is an invariant un-
der general coordinate transformations. Therefore, we see that general coordinate
invariance and scale invariance of an action of this type are fundamentally incom-
patible in general relativity. This is further supported by the fact that the trace of
the divergenceless quantityGµν does not vanish. Of course, one may proceed as
Weyl (1922) and consider Lagrangians quadratic in the curvature scalar in order
to guarantee scale invariance of the action. However, the resulting field equations
necessarily contain derivatives of the metric tensor higher than the second. Alter-
natively, one may proceed as Dirac (1973) and introduce a new scalar field that
transforms under a scale transformation with Weyl weight−1. This theory has
enjoyed only limited success (Wesson, 1980).
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3. GLOBAL SCALE INVARIANCE AND THE
COSMOLOGICAL CONSTANT

Rather than formulating an action principle that is invariant with respect
to both coordinate transformations and scale transformations simultaneously, we
reformulate general relativity so that the scale-dependent quantity, the Ricci scalar
curvature, remains undetermined by the field equations themselves. As a result, the
remaining field equations become scale-free. This allows us to treat these equations
as the dynamical equations of a globally scale invariant theory that can be gauged
locally.

First, let us consider Einstein’s equations in the absence of matter

Rµν − 1

2
Rgµν = 0, (12)

which follow from the variational principleδ IG = 0, in which the metric com-
ponents are varied independently. While the gravitational action is not invariant
under a global scale transformation defined by Eq. (6) withλ = constant, Einstein’s
free-field equations are invariant with respect to global scale transformations. This
follows becauseRµν , R, andgµν transform under a global scale transformation
with Weyl weights 0,−1, and+1, respectively. The fact that the equations are
globally scale invariant does not imply that the theory is also scale-free. This
follows by taking the trace of (12), giving

R= 0. (13)

BecauseR vanishes, pure gravity is also scale-free: pure gravity contains no in-
trinsic length scale. Note that Eq. (13) is not independent of (12); rather, it is a
consequence of the field equations.

We stress that the terms scale-free and scale-invariant are similar but not
identical. A theory is scale-free if it does not contain any constant fundamental
length scale. A theory is (globally) locally scale-invariant if, in addition to the
absence of any fundamental length scale, the dynamical equations are covariant
with respect to (global) local scale transformations. Note that a theory may be
scale-free and not scale-invariant. As we saw above, pure gravity is globally scale-
invariant: the equations of pure gravity are covariant, in fact invariant, with respect
to global scale transformations, and sinceRvanishes pure gravity is also scale-free.

Once matter is introduced, global scale invariance of the theory is lost. The
action for the gravitational field in the presence of matter is

I = IG + IM , (14)

where

IM = −2κ
∫

L M
√−gd4x, (15)
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is the matter action andκ = 8πG
c4 is the Eistein gravitational constant. The resulting

field equations are

Rµν − 1

2
Rgµν = κTµν. (16)

Taking the trace of the above equation yieldsR= −κT . Again, this equation is
contained in the field equations. The Eq. (16) may be considered globally scale
invariant if one assumes that the productκTµν is scale-invariant (Canutoet al.,
1977), regardless of the manner in which each term transforms individually. How-
ever, sinceR does not vanish the theory is no longer globally scale-invariant. Rest
masses introduce an intrinsic length scale.

There is a way of reformulating the theory so that the scale dependence
remains undetermined by the field equations themselves. This is accomplished
by a well-known procedure developed by Anderson and Finkelstein (1971) for
introducing the cosmological constant into Einstein’s equations, not as a predeter-
mined coefficient of the action, but as an arbitrary integration constant. Indeed, if
one introduces the constraint in the variational principle:

√−g = σ (x), (17)

whereσ (x) is a scalar density of weight+1, an external field provided by nature,
then the components of the metric tensor cannot be varied independently in the
action principle, but must satisfy

δ
√−g = −1

2

√−ggµνδg
µν = 0. (18)

The resulting field equations express the equality of the traceless parts of Eq. (16):

Rµν − 1

4
gµνR= κ

(
Tµν − 1

4
gµνT

)
. (19)

Because of Eq. (11) and

Tµν
;ν = 0, (20)

one obtains

R+ κT = 43, (21)

where3 is an integration constant and the factor four is introduced for convenience.
Substituting this back into the field equations (19) we recover Einstein’s field
equations with a cosmological constant:

Rµν − 1

2
Rgµν +3gµν = κTµν. (22)

Einstein (1919) examined the field equations (19) withTµν representing only
the stress-energy tensor of the electromagnetic field, and similarly recovered the
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cosmological constant as a constant of integration. Anderson and Finkelstein
(1971) were the first to propose the above general procedure in their theory of
unimodular relativity. This formulation has the attractive property that the con-
tribution of vacuum fluctuations automatically cancels on the right hand side of
equation (19) (Weinberg, 1989). The full theory is contained in either Eqs. (17)
and (19) or Eqs. (17) and (22). The full theory is not scale-invariant, because it
contains the constraint (17), which manifests itself in the field equations by the
presence of the fundamental length3−1/2. However, the set of Eq. (19) are scale-
free. Equation (22) is valid for any value of3 which is an arbitrary constant of
integration. The condition (17) does not determine the value of3, which must be
determined by external conditions.

The ability to remove the scale dependence from the field equations is a
consequence of the ability to reduce the metric tensor into two nontrivial geomet-
ric objects (Anderson and Finkelstein, 1971):g the determinant ofgµν , andγµν
the relative tensorgµν/(

√−g)1/2 of determinant−1. The determinant determines
entirely the measure structure of space–time, while the relative tensor alone de-
termines the null-cone or causal structure. In unimodular relativity, the irreducible
relative tensorγµν is the fundamental geometric object of space–time. The metric
tensor

gµν = (
√−g)1/2γµν , (23)

is treated as an artificial construct of two independent entities, the fundamental
object γµν and the measure field

√−g. The measure field is only included in
the formulation of the action principle in order to maintain general covariance.
Because of the constraint (17), the invariance group of unimodular relativity is the
subgroup of the Einstein group with unit determinant:

det

∣∣∣∣∂x′µ

∂xν

∣∣∣∣ = 1. (24)

(See Anderson (1968) for a lucid discussion of the terms “invariance” and “co-
variance” as they are used here.)

4. GEOMETRY AND SPACE–TIME MEASUREMENTS

The bifurcation of general relativity into two independent parts suggests a
new way of looking at the connection between geometry and space–time mea-
surements. In general relativity, actual space–time is represented geometrically
by a Riemannian manifoldR: there exists a transparent correspondence between
geometrical quantities on the one hand and physical space–time measurements on
the other hand. The square of the length of an arbitrary vectorAµ inR is

A2 = gαβ AαAβ , (25)
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and the change of an arbitrary vectorAµ under an infinitesimal displacementdxα

inR is

dAµ = 0µρσ Aρ dxσ , (26)

where0µρσ is the Christoffel symbol of the second kind:

0µρσ =
gµα

2

(
∂gαρ
∂xσ
+ ∂gασ
∂xρ
− ∂gρσ
∂xα

)
. (27)

Equation (27) is obtained from the condition

gµν;λ = 0, (28)

which follows from the requirement that the length of an arbitrary vector is pre-
served under parallel displacement inR. Because we identifyR with physical
space–time in general relativity it follows that the quantityA2 may be identified
with the result of a physical space–time measurement. Furthermore, it follows that
the parallel displacement of a vectorAµ in R may be equated with the transfer
of the corresponding physical length in actual space–time. Moreover, any gen-
eralization of the geometrical manifoldR will presumably manifest itself as a
generalization of the behavior of physical rods and clocks. These assumptions are
fundamental to Einstein’s theory.

Unimodular relativity, owing to the bifurcation of the metric tensor, admits
a substructure to the manifoldR, and hence permits the introduction of another
geometrical manifold that is not directly related to space–time measurements. To
see this we rewrite Eq. (25) in terms of the quantitiesγαβ and

√−g of unimodular
relativity:

A2 = (
√−g)1/2γαβ AαAβ. (29)

We define the “length”

a2 ≡ γαβ AαAβ , (30)

so that Eq. (29) becomes

A2 = (
√−g)1/2a2 = σ 1/2a2. (31)

We see that a physical measurement is obtained by multiplying two independent
quantities,σ 1/2 anda2. In general relativity, both of these quantities are obtained
from the geometrical manifoldR. However, sinceσ andγµν are completely in-
dependent in unimodular relativity, we may construct a subgeometry that is only
associated with the fundamental objectγµν . Thus, we define a manifoldM. On
this manifold we define a metric tensorg̃µν and an affine connectioñ0µρσ . We
do not assume that̃gµν satisfies Eq. (28); the quantities0̃µρσ are not necessarily
Christoffel symbols. Furthermore, the measure field

√−g̃ is not necessarily iden-
tified with σ . A correspondence with physical space–time measurements may be
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obtained fromM if we make the following identification:

γµν ≡ g̃µν
(
√−g̃)1/2

. (32)

Thus, the Riemannian manifoldR in unimodular relativity may be treated as an
artificial construct defined from the manifoldM by the relationship

gµν = σ 1/2γµν = σ 1/2 g̃µν
(
√−g̃)1/2

. (33)

In the original formulation of unimodular relativity (1971), Anderson and
Finkelstein tacitly assumed that the manifoldM was also a Riemannian mani-
fold. However, a physical measurement defined in this manner admits a natural
generalization, for the only geometrical quantity obtained fromM is the scale-
independent quantitya2. Consequently, the choice of the scale of the metric tensor
onM is arbitrary. Therefore, we may choose a Weyl manifoldW forM. The law
of parallel displacement of an arbitrary vectorAµ inW is

dAµ = −0̃µρσ Aρ dxσ , (34)

where0̃αβγ is the Weyl affine connection:

0̃αβγ = 0αβγ − g̃σα[g̃σβϕγ + g̃σγ ϕβ − g̃βγ ϕσ ]. (35)

0αβγ now represents the Christoffel symbol constructed from the quantitiesg̃µν .
The Weyl affine connectioñ0αβγ follows from0αβγ by the substitution

∂γ → ∂γ − 2ϕγ . (36)

The vectorϕµ serves as the connection coefficient for the parallel displacement of
length inW:

dl = +ϕβ dxβ l , (37)

wherel is the length of an arbitrary vector inW. As long as physically measured
quantities are associated with the manifoldW via Eq. (33), the comparison of
physical lengths at different points in space–time is an unambiguous procedure
that is not to be confused with the comparison of vector lengths at different points
in the manifoldW. Consequently, the identificationM =W is not incompatible
with the existence of the well-defined electromagnetic spectrum observed from
chemical elements and Einstein’s objection does not apply tothis use of a Weyl
geometry. Both Weyl (1922) and Eddington (1954) envisioned that such a geometry
could be constructed which is not immediately identifiable with actual space–time
but could be associated with physical measurements. We see that unimodular
relativity provides a natural framework for the realization of this vision.
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5. LOCAL SCALE INVARIANCE AND THE
ELECTROMAGNETIC FIELD

The field equations of unimodular relativity (19) are the equations for the
quantitiesγµν corresponding to the special caseM = R. These equations are
globally scale-invariant and scale-free, and are furthermore independent of the
measure equation. Therefore, we view these equations as the dynamical set of
equations of a globally scale-invariant theory. This interpretation is further sup-
ported by the fact that Eq. (19) is traceless (see Eq. (7)).

We now demand local scale invariance of this globally scale-invariant theory.
We replace the Ricci tensorRµν in the action (9) by the scale-invariant Ricci tensor
R̃µν of Weyl’s theory:

R̃αβ =
∂0̃

ρ
αβ

∂xρ
− ∂0̃

ρ
αρ

∂xβ
+ 0̃σαβ0̃ρρσ − 0̃σαρ0̃ρβσ , (38)

where the quantities̃0αβγ are constructed from the metric tensor and the vector field
ϕα according to Eq. (35). Under the transformation (6),ϕα transforms according
to

ϕα → ϕα + 1

2
(logλ),α = ϕα + 1

2

ε,α

ε
, (39)

where a comma denotes ordinary differentiation. Equation (39) guarantees the
invariance of0̃αβγ under local scale transformations. Thus,ϕα may be considered
a compensating gauge field that guarantees local scale invariance. Similarly,R̃αβ
is an invariant under transformation (6) and the scalar curvatureR̃:

R̃= R+ 6(ϕαϕα)− 6ϕα;α, (40)

transforms with Weyl weight−1. The free LagrangianL0 for the gauge fieldϕµ
is the lowest order covariant combination of the gauge potentials:

L0 = − 1

16π
fµν f µν , (41)

where fµν = ϕµ,ν − ϕν,µ and the indices are raised with the metricg̃µν . Conse-
quently, the action is∫ [

R+ 6(ϕαϕα)− 6ϕα;α −
k

16π
fµν f µν

]√−g̃ d4x + IM , (42)

wherek is a constant that transforms under a local scale transformation with
Weyl weight+1. The field equations from the restricted variation of unimodular
relativity are

R̃µν − 1

4
R̃g̃µν = kT(E M)

µν + κ
(

Tµν − 1

4
g̃µνT

)
, (43)
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whereT (E M)
µν ≡ 1

8π ( fµα f αν − 1
4 g̃µν f αβ fαβ). Note that the covariant derivative of

the metric tensor does not vanish and therefore the integral overδRµν does not
reduce to a surface integral. These field equations are invariant under local scale
transformations (6). They are similar, but not identical to the Maxwell–Einstein
system of equations. The correction terms are on the order of the cosmological
constant. Bergmann and Einstein (Bergmann, 1966) have examined the set of
equations:̃Rµν − 1

2 g̃µν R̃= 0, and found that its solutions do not satisfy reasonable
boundary conditions. However, they identifiedg̃µν with the scale-dependent metric
tensor of space–time and also failed to include the termkT(E M)

µν .
The field equations for the quantitiesϕµ are obtained by a variation ofϕµ in

(42). This produces Maxwell’s free-field equations:

f µν;ν = 0, (44)

only for the case of a vanishing cosmological constant. Therefore, we may iden-
tify ϕµ as being proportional to the electromagnetic four-vector potential, with
the condition that exact gauge invariance of electromagnetism is connected to a
vanishing cosmological constant.

6. DISCUSSION

We have used the mathematical formalism developed by Weyl, originally
used unsuccessfully to generalize Einstein’s relativity, to generalize unimodular
relativity. We may adopt Weyl’s formalism in unimodular relativity because the
fundamental geometrical object is not the metric tensorgµν , but the scale-invariant
relative tensorγµν . Consequently, the electromagnetic field may be viewed as
a compensating gauge field that guarantees local scale invariance of the field
equations in unimodular relativity.

In the limit that the measure field may be ignored, viz. small length scales,
the full theory is scale invariant, in accordance with the belief that general rel-
ativity should exhibit approximate scale-invariance at high energies. The source
of the measure fieldσ (x) was not specified in the original paper (Anderson and
Finkelstein, 1971); its value was simply provided by an external condition. We
postulate that the source of the measure field is the background mass distribution
of the distant stars, and consequently the tensorTµν only represents local matter.
Note that in Einstein’s original formulation of general relativity there is no dis-
tinction between a local mass distribution, such as a planet or the sun, and the
background mass distribution of the distant stars. The entire matter content of the
universe is contained in the matrixTµν . However, if we postulate that the distant
stars are the source of the fieldσ (x) then such a distinction can be made. According
to this postulate, distant matter would determine the measure structure of space–
time and local matter would detemine the null-cone structure of space–time. Since
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the volume of space–time within the intervald4x is σ (x) d4x, the very existence
of the volume element would then be tied into the boundary conditions defined by
the distant stars.

This postulate solves an important problem concerning Mach’s principle in
general relativity. Mach’s principle states that inertia cannot be defined relative
to absolute space, but must be defined relative to the entire matter content of
the universe. As is well known, one of the reasons Einstein (1917) introduced the
cosmological constant into the gravitational field equations was to accommodate
Mach’s principle. Einstein hoped that his reformulation of the field equations
with a cosmological constant would eliminate solutions in the absence of mass,
giving gµν = 0 whenTµν = 0. Soon afterward, de Sitter (1917) showed that this
was not the case; a solution with a nonzerogµν existed even in the absence of
matter. However, if the above postulate is adopted then de Sitter’s solution is not in
conflict with Mach’s principle, for then the conditionTµν = 0 would only indicate
the absence of a local mass distribution. The existence of de Sitter’s solution
would then be connected to a nonzeroσ (x), which would presumably vanish if the
background mass distribution of the distant stars were to disappear. Note that this
solution to the problem of Mach’s principle in general relativity is similar to that
provided by Brans and Dicke (1961), who supplied a scalar field in addition to
the metric tensor. However, instead of adding an additional degree of freedom,
we identify 1 of the 10 degrees of freedom of the metric tensor as a scalar field
connected to the boundary conditions of space–time.

The theory outlined above may provide insight into the strange behavior
of quantum particles. As is well known, singularities of the fieldgµν traverse
geodesics of the manifold, which are identified with the trajectories of material
particles. However, according to the theory described earlier, this is just an ap-
proximation, for material particles should be viewed as singularities of the field
γµν , notgµν .
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